A Predictive Model for Solar Photovoltaic Power using the Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data
نویسندگان
چکیده
The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photovoltaic power using the Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms and real-time weather data. The correlations between the global solar irradiance, temperature, solar photovoltaic power, and the time of the year were studied to extract the knowledge from the available historical data for the purpose of developing a real-time prediction system. The solar PV generated power data were extracted from the power plant installed on-top of the faculty of engineering building at Applied Science Private University (ASU), Amman, Jordan and weather data with real-time records were measured by ASU weather station at the same university campus. Huge amounts of training, validation, and testing experiments were carried out on the available records to optimize the Neural Networks (NN) configurations and compare the performance of the LM and BR algorithms with different sets and combinations of weather data. Promising results were obtained with an excellent realtime overall performance for next-day forecasting with a Root Mean Square Error (RMSE) value of 0.0706 using the Bayesian regularization algorithm with 28 hidden layers and all weather inputs. The Levenberg-Marquardt algorithm provided a 0.0753 RMSE using 23 hidden layers for the same set of learning inputs. This research shows that the Bayesian regularization algorithm outperforms the reported real-time prediction systems for the PV power production. Keywords—Solar photovoltaic; solar irradiance; PV power forecasting; machine learning; artificial neural networks; LevenbergMarquardt; Bayesian regularization
منابع مشابه
Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning al...
متن کاملConstruction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...
متن کاملShort-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters
Short-term solar irradiance forecasting (STSIF) is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN) is suitable for STSIF modeling and many research works...
متن کاملA New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System
In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...
متن کاملDAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM
This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...
متن کامل